

History of Neutrino Physics

- how did we learn what we know today?
- from saving energy conservation to discovering physics beyond the Standard Model

History of Neutrino Physics

- how did we learn what we know today?
- from saving energy conservation to discovering physics beyond the Standard Model

Historical Lessons

- how did we make the discoveries?

History of Neutrino Physics

- how did we learn what we know today?
- from saving energy conservation to discovering physics beyond the Standard Model

Historical Lessons

- how did we make the discoveries?

Future Efforts

- from discoveries to precision studies, picking the best tools at hand
- where will neutrino physics go in the future?
- neutrinos in particle/astrophysics?

A disclaimer

History of neutrino physics in ~1 hr?

I will be selective. Apologies to all experiments and results I cannot show.

I will draw heavily on my own personal experience (SNO, KamLAND, reactor neutrinos, 0νββ)

Continous Beta-Decay Spectrum

1914 Chadwick

Fig. 5. Energy distribution curve of the beta-rays.

Bohr: "At the present stage of atomic theory, however, we may say that we have no argument, either empirical or theoretical, for upholding the energy principle in the case of β -ray disintegrations".

Postulate of the Neutrino

My max. Poster comme of 260 0373

1930

Wolfgang Pauli

Offener Brief an die Gruppe der Radicaktiven bei der Genvereins-Tagung zu Tübingen.

>sobrift

= ysikelisches Institut

= or Eidg. Technischen Hochschule

Zirich, 4. Des. 1930 Dicriastrance

Liebe Radioaktive Damen und Herren,

Wie der Veberbringer dieser Zeilen, den ich huldvollst muhören bitte, Ihnan des nEheren auseinendersetzen wird, bin ich mesichts der "felschen" Statistik der N- und Li-6 Kerne, sowie se kontinuierlichen beta-Spektrums auf einen versweifelten Ausweg wfallen um den "Wecheelsate" (1) der Statistik und den Energiesate 🖟: retten. Mamlich die Möglichkeit, es könnten elektrisch neutrals Tellohen, die ich Neutronen mennen will, in den Ternen existieren. Welche dem Spin 1/2 heben und das Ausschliessungsprinzip befolgen und **elek** von Lichtquanten enseerden noch dadurch unterscheiden, dass eie **micht** wit Lichtgeschwindigkeit laufen. Die Hasse der Neutronen Manaste von derselben Grossenordnung wie die Elektronensesse sein und **ichmfalls** nicht grösser als 0.01 Protonemassa.- Das kontinuierliche **bela.** Spektrum väre dann varständlich unter der Ammalme, dass beim beta-Zerfall mit dem blektron jeweils noch ein Meutron emittiert miled, derart, dass die Summe der Energien von Meutron und klektron konstant ist.

Pauli proposed that an undetectable particle shared the energy of beta decay with the emitted electron.

"I have done something very bad today by proposing a particle that cannot be detected; it is something that no theorist should ever do."

- Wolfgang Pauli

Fermi's Theory of Beta Decay

1933

ANNO IV - VOL. II - N. 12

ED IL PROGRESSO TECNICO NELL'ECONOMIA NAZIONALE

Tentativo di una teoria dell'emissione dei raggi "beta'

Note del prof. ENRICO FERMI

Riassunto: Teoria della emissione dei raggi P delle sostanze radioattive, fondata sul-l'ipotesi che gli elettroni emessi dai nuclei non esistano prima della disintegrazione ma vengano formati, insieme ad un neutrino, in modo analogo alla formazione di

Neutron

Neutron Beta Decay

Proton

Enrico Fermi Univ. of Chicago Experiment:

$$M_n c^2 \neq E_p + E_e$$

Fermi's Theory of beta decay based on Pauli's Letter of

Conjecture:

$$M_n c^2 = E_p + E_e + E_v$$

Regrets

Consistency requires that E_y is not observable!

Fermi's theory still stands (parity violation added in the 50s).

Fermi's Idea for Measuring m_v

Fig. 5. Energy distribution curve of the beta-rays.

Fig. 1.2. Graph from Fermi's famous paper on the theory of beta decay, showing how the shape of the emitted electron's energy spectrum varies with neutrino mass

Weak Interactions in the Standard Model

The weak gauge bosons W[±] act on left-handed doublets

(charged-current interaction)

 d_L W v_e

 β -decay

Since m_w =80.4 GeV >> m_p decay is governed by Fermi coupling G_F

Fermi coupling

$$\frac{G_F}{\sqrt{2}} = \frac{g_2^2}{8m_W^2}$$

g₂= W gauge coupling

Weinberg angle
$$\frac{e}{g_2} = \sin \theta_W = 0.48$$

Crossing Symmetry

First Proposal For Direct Detection of Neutrino

First Antineutrino Detector

Reines and Cowan 1956

$$\overline{\nu}_e + p \rightarrow e^+ + n$$

Enrico Fermi and the Neutrino

Enrico Fermi proposes "neutrino" as the name for Pauli's postulated particle.

He formulates a quantitative theory of weak particle interactions in which the neutrino plays an integral part.

THE UNIVERSITY OF CHICAGO

INSTITUTE FOR NUCLEAR STUDIES

October 8, 1952

Dr. Fred Reines
Los Alamos Scientific Laboratory
P.O. Box 1663
Los Alamos, New Mexico

Dear Fred:

Thank you for your letter of October 4th by Clyde Coman and yourself. I was very much interested in your new plan for the detection of the neutrino. Certainly your new method should be much simpler to carry out and have the great advantage that the measurement can be repeated any number of times. I shall be very interested in seeing how your 10 cubic foot scintillation counter is going to work, but I do not know of any reason why it should not.

Good luck.

Suries

Enrico Fermi

Reines-Cowan Announcement

1956

Observation of the Free Antineutrino

1959 The Savannah River Detector - A new design

Second version of Reines' experiment worked!

inverse beta decay $\overline{\nu}_e + p \rightarrow e^+ + n$

n capture

Reines-Cowan Experiment

coincidence event signature

event signal

Early Neutrino Oscillation Searches

Бруно Понтекоры

New neutrino physics such as oscillations?

In 1960's Pontecorvo contemplates $v-\bar{v}$ oscillation and suggests that if lepton number is not conserved $v_{\rm e}$ could change into $v_{\rm u}$.

Early Neutrino Oscillation Searches

Бруно Понтекоры

New neutrino physics such as oscillations?

In 1960's Pontecorvo contemplates $v-\overline{v}$ oscillation and suggests that if lepton number is not conserved v_e could change into v_μ .

Early Neutrino Oscillation Searches

New neutrino physics such as oscillations?

In 1960's Pontecorvo contemplates $v-\overline{v}$ oscillation and suggests that if lepton number is not conserved v_e could change into v_u .

37.9 m

Neutrino Oscillation Search with Reactor Antineutrinos

Oscillation Searches at Chooz + Palo Verde:

Absolute measurement with 1 detector

detector size: several tons

Neutrino Oscillation Search with Reactor Antineutrinos

Oscillation Searches at Chooz + Palo Verde:

~3000 events in 335 days

2.7% uncertainty

Distance: 1km

Absolute measurement with 1 detector

detector size: several tons

Discovery of Muon Neutrino

1962

Lederman, Schwartz, Steinberger

Precision studies of Z-line shape, determine number of active light neutrinos

Each separate $(v_l)_L$ adds to total Z-width.

$$Z^{\circ} \to q\overline{q}, l\overline{l} \qquad N_{\nu} = \frac{\Gamma_{\mathrm{inv}}}{\Gamma_{\ell}} \left(\frac{\Gamma_{\ell}}{\Gamma_{\nu}}\right)_{\mathrm{SM}}$$

From LEP, one finds:

$$N_{y} = 2.984 \pm 0.008$$

which argues strongly for only having 3 generations

Precision studies of Z-line shape, determine number of active light neutrinos

Each separate $(v_l)_L$ adds to total Z-width.

$$Z^o \to q\overline{q}, l\overline{l} \qquad N_\nu = \frac{\Gamma_{\mathrm{inv}}}{\Gamma_\ell} \left(\frac{\Gamma_\ell}{\Gamma_\nu}\right)_{\mathrm{SM}}$$

From LEP, one finds:

$$N_{y} = 2.984 \pm 0.008$$

which argues strongly for only having 3 generations

rations

Before V_T Was detected directly!

Precision studies of Z-line shape, determine number of active light neutrinos

Each separate $(v_l)_L$ adds to total Z-width.

$$Z^o \to q\overline{q}, l\overline{l} \qquad N_\nu = \frac{\Gamma_{\mathrm{inv}}}{\Gamma_\ell} \left(\frac{\Gamma_\ell}{\Gamma_\nu}\right)_{\mathrm{SM}}$$

From LEP, one finds:

$$N_{y} = 2.984 \pm 0.008$$

which argues strongly for only having 3 generations

erations

Before V_T Was detected directly!

Big bang nucleosynthesis gives a constraint on the effective number of light neutrinos at T~ 1 MeV:

Precision studies of Z-line shape, determine number of active light neutrinos

Each separate $(v_l)_L$ adds to total Z-width.

$$Z^o \to q\overline{q}, l\overline{l} \qquad N_\nu = \frac{\Gamma_{\mathrm{inv}}}{\Gamma_\ell} \left(\frac{\Gamma_\ell}{\Gamma_\nu}\right)_{\mathrm{SM}}$$

From LEP, one finds:

$$N_{y} = 2.984 \pm 0.008$$

which argues strongly for only having 3 generations

erations

Before V_T Was detected directly!

Big bang nucleosynthesis gives a constraint on the effective number of light neutrinos at T~ 1 MeV:

Search for tau Neutrino

Discovery of τ lepton at SLAC (Martin Pearl, 1975)

→ there should be a corresponding neutrino.

In 1989, indirect evidence for the existence of v_{τ} in measurement of Z-width \rightarrow no one had directly observed the tau neutrino.

The tau neutrino interact and form a tau that has an 18% probability of decaying to

- a muon and two neutrinos (long event)
- an electron and two neutrinos (short event)

86% of all tau decays involve only 1 charged particle (a kink) which is the particle physicists are looking for in DONUT experiment

Discovery of tau Neutrino

2000

An 800 GeV beam of protons from the TeVatron collides with a block of tungsten

D_{s} decay into τ and ν_{τ} neutrino

$$D_s \to V_{\tau} + \tau$$
$$\tau \to V_{\tau} + X$$

Experimental Challenges:

- Very short lifetime of the τ .
- v_{τ} is extremely non-interacting

(detector must have a very fine resolution).

Detecting a τ Neutrino

- 6,000,000 candidate events on tape
- 4 clean tau events

A v_{τ} interacted with a nucleon in a steel layer, producing a τ .

Long tau decay because it decays to one charged particle, the electron, and the decay vertex occurs several sheets downstream from the neutrino interaction vertex.

Neutral Current Discovery (1973)

Gargamelle bubble chamber at CERN showing how an invisible neutrino has jogged an electron

Major triumph for the Standard Model

Table 1

No. of neutral-current candidates 102 64 No. of charged-current candidates 428 148

"Standard Model" Neutrino Physics

1914	Electron Spectrum in β decay is continuous

1930 Pauli postulates that a new particle is emitted

1933 Fermi names the new particle neutrino and introduces four-fermion interaction

1956 Reines and Cowan discover the neutrino

1962 At least two neutrinos: $v_e \neq v_\mu$

1973 Discovery of neutral currents at CERN

1983 Discovery of the W and Z

1989 Measurement of Z width at CERN $\rightarrow N_v=3$

2002 tau neutrino discovered.

Neutrinos in the Standard Model

Discovery of ν_{μ} and ν_{τ} Accelerator studies of ν

The Standard Model

- 3v flavors
- upper limits on m, from kinematic studies.
- massless v (ad hoc assumption in Standard Model)

Particle Properties of the Neutrino

Interactions weak

(and gravitational) only

Flavors 3 active flavors

Charge

Spin s=1/2

Type

Dirac $v \neq \overline{v}$

Majorana $v = \overline{v}$

Mass

 m_{ve} < 2 eV from tritium β decay

 m_{vu} < 170 keV from π decay

 $m_{v\tau}$ < 18 MeV from τ decay

Birth of Neutrino Astrophysics

1938 Bethe & Critchfield

$$p + p \rightarrow {}^{2}H + e^{+} + v_{e}$$

1947 Pontecorvo, 1949 Alvarez propose neutrino detection through ${}^{37}\text{Cl} + v_0 \rightarrow {}^{37}\text{Ar} + e^-$

1960's Ray Davis builds chlorine detector.
John Bahcall, generates first solar
model calculations and v flux
predictions.

Light Element Fusion Reactions

"...to see into the interior of a star and thus verify directly the hypothesis of nuclear energy generation in stars..." (Bahcall, 1964)

Cl-Ar Solar Neutrino Experiment at Homestake

Year

What is the Solution?

Experimental Errors?

But all experiments show similar effect.

Astrophysics wrong?

Perhaps, but even with all fluxes as free parameters, cannot reproduce the data. $P_{MSM} < 1.7\%$ at 95% CL

KMH, Robertson PRL 77:3270 (1996)

New neutrino physics such as oscillations? In 1968 Pontecorvo suggests that if lepton number is not conserved, v_e could change into v_u .

Since the Cl-Ar detector was sensitive only to ν_e , it would appear that the flux was low.

Too few v_e observed from the Sun.

Even with all solar neutrino fluxes as free parameters, cannot reproduce the data. $P_{MSM} < 1.7\%$ at 95% CL KMH, Robertson PRL 77:3270 (1996)

KMH, Robertson PRL 77:3270 (1006)

Too few v_e observed from the Sun.

Even with all solar neutrino fluxes as free parameters, cannot reproduce the data. $P_{MSM} < 1.7\%$ at 95% CL

Electron Neutrino flux

Total Neutrino flux

KMH, Robertson PRL 77:3270 (1006)

Too few v_e observed from the Sun.

Even with all solar neutrino fluxes as free parameters, cannot reproduce the data. $P_{MSM} < 1.7\%$ at 95% CL

2/3 of initial solar ν_e are observed at SNO to be $\nu_{\mu,\tau}$

KMH, Robertson PRL 77:3270 (1006)

Too few v_e observed from the Sun.

Even with all solar neutrino fluxes as free parameters, cannot reproduce the data. $P_{MSM} < 1.7\%$ at 95% CL

2/3 of initial solar ν_e are observed at SNO to be $\nu_{\mu,\tau}$

Neutrino Oscillation

Neutrino States

$$\begin{array}{lcl} |\nu_{a}\rangle & = & \cos\theta |\nu_{1}\rangle - \sin\theta |\nu_{2}\rangle \\ |\nu_{b}\rangle & = & \sin\theta |\nu_{1}\rangle + \cos\theta |\nu_{2}\rangle \end{array} \qquad \begin{pmatrix} v_{e} \\ v_{\mu} \end{pmatrix} = \begin{bmatrix} \cos\theta & \sin\theta \\ 2\sin\theta & \cos\theta \end{bmatrix} \begin{pmatrix} v_{1} \\ v_{2} \end{pmatrix}$$

Time Evolution

Бруно Понтекоры

Pontecorvo, 1968

$$P_{i \to i} = \sin^2 2\theta \sin^2 \left(1.27 \Delta m^2 \frac{L}{E} \right)$$

oscillation → energy and baseline- dependent effect

Borexino

vacuum-matter transition in solar neutrino oscillation

Reactor Antineutrinos in Japan

Japanese Reactors

Reactor Antineutrinos

 $^{235}\text{U}:^{238}\text{U}:^{239}\text{Pu}:^{241}\text{Pu} = 0.570:\ 0.078:\ 0.0295:\ 0.057$

- ~ 200 MeV per fission
- \sim 6 $\overline{\nu}_{e}$ per fission
- $\sim 2 \text{ x } 10^{20} \ \overline{\nu}_e / \text{GW}_{\text{th}} \text{-sec}$

reactor \overline{v} flux ~ 6 x 106/cm²/sec

KamLAND Antineutrino Detector

$$\overline{\nu}_{\rm e}$$
 + p \rightarrow e⁺ + n $E_{\overline{\nu}_e} \simeq E_{\rm p} + \overline{E}_n + 0.8\,{\rm MeV},$

$$E_{\overline{\nu}_e} \simeq E_{\rm p} + \overline{E}_n + 0.8 \,{\rm MeV},$$

through inverse β -decay

liquid scintillator target:

- proton rich > 1031 protons
- good light yield

KamLAND 2003: First Direct Evidence for Reactor \overline{v}_{e} Disappearance

NUSS, July 10, 2

Karst

PRL 90:021802 (2003)

Observed \overline{v}_{e} 54 events

No-Oscillation 86.8 ± 5.6 events

Background 1 ± 1 events Livetime: 162.1 ton-yr

mean, flux-weighted reactor distance ~ 180km

KamLAND 2003: First Direct Evidence for Reactor \overline{v}_{e} Disappearance

NUSS, July 10, 2

Karst

PRL 90:021802 (2003)

Observed \overline{v}_{e} 54 events

No-Oscillation 86.8 ± 5.6 events

Background 1 ± 1 events Livetime: 162.1 ton-yr

suggested by solar neutrino experiments

mean, flux-weighted reactor distance ~ 180km

KamLAND 2003: First Direct Evidence for Reactor \overline{v}_{e} Disappearance

NUSS, July 10, 2

Karst

PRL 90:021802 (2003)

Observed \overline{v}_{e} 54 events

No-Oscillation 86.8 ± 5.6 events

Background 1 ± 1 events Livetime: 162.1 ton-yr

reactor antineutrino experiment

suggested by solar neutrino experiments

mean, flux-weighted reactor distance ~ 180km

KamLAND 2008: Precision Measurement of Oscillation

Prompt event energy spectrum for v_e

number of events

expected: 2179 ± 89 (syst)

observed: 1609

bkgd: 276 ± 23.5

Spectral Distortions: A unique signature of neutrino oscillation!

significance of distortion: > 5σ best-fit $\chi^2/ndf=21/16$ (18% C.L.)

significance of disappearance

(with 2.6 MeV threshold): 8.5σ

no-osc $\chi^2/ndf=63.9/17$

KamLAND 2008: Precision Measurement of Oscillation

L/E Dependence

oscillation

Solar neutrino problem solved! L/E figure demonstrates \overline{v} oscillation.

1970-1995 first identified by Ray Davis (missing solar v_e)

2002-2008 SNO observes neutrino flavor change, finds evidence for neutrino mass

2003-2008 KamLAND demonstrates \overline{v} oscillation, precision measurement of Δm^2

Neutrino Physics at Reactors

Next - Discovery and precision measurement of θ_{13}

2008 - Precision measurement of Δm_{12}^2 . Evidence for oscillation

2004 - Evidence for spectral distortion

2003 - First observation of reactor antineutrino disappearance

1995 - Nobel Prize to Fred Reines at UC Irvine

1980s & 1990s - Reactor neutrino flux measurements in U.S. and Europe

1956 - First observation of (anti)neutrinos

Past Reactor Experiments

KamLAND

Hanford
Savannah River
ILL, France
Bugey, France
Rovno, Russia
Goesgen, Switzerland
Krasnoyark, Russia
Palo Verde
Chooz, France

Atmospheric Neutrino Studies

Cosmic Ray

Atmospheric Neutrino Studies

Cosmic Ray

Super-Kamiokande

Atmospheric Neutrino Studies

Inner detector
11146 20" PMTs
Outer detector
1885 8" PMTs

Super-Kamiokande

Atmospheric Neutrino Studies

Inner detector
11146 20" PMTs
Outer detector
1885 8" PMTs

Atmospheric Neutrino Flavor Change

evidence for v_{μ} disappearance: zenith-angle dependence

 $\Delta m^2 = 2.5 \times 10^{-3} \, \text{eV}^2 \neq 0 \rightarrow \text{at least 1 m}_{\text{v}} \neq 0$ Mixing angle is quite large ($\theta \sim 45^{\circ}$) 1998

Super-K

Precision Science with Accelerator v

Precision Science with Accelerator v

A Decade of Discovery: 1998 - 2008

A Decade of Discovery: 1998 - 2008

Super-K:

atmospheric ν_{μ} neutrino oscillation

K2K:

accelerator v_{μ} oscillation

SNO:

solar ve flavor transformation

KamLAND:

reactor \overline{v}_e disappearance and oscillation

A Decade of Discovery: 1998 - 2008

Super-K:

atmospheric v_{μ} neutrino oscillation

K2K:

accelerator v_{μ} oscillation

SNO:

solar ve flavor transformation

KamLAND:

reactor \overline{v}_e disappearance and oscillation

Experimental Indications for Neutrino Oscillations

Atmospheric Neutrinos

L = 15 - 15,000 km

E = 300 - 2000 MeV

Solar Neutrinos

 $L = 10^8 \text{ km}$

E = 0.3 to 3 MeV

 $\Delta m^2 = \sim 3 \times 10^{-3} \text{ eV}^2$ Prob_{OSC} = ~100%

Experimental Indications for Neutrino Oscillations

LSND Experiment

L = 30m

 $E = \sim 40 \text{ MeV}$

 $\Delta m^2 = 0.3 \text{ to } 3 \text{ eV}^2$ Prob_{OSC} = 0.3 %

Atmospheric Neutrinos

L = 15 - 15,000 km

E = 300 - 2000 MeV

Solar Neutrinos

 $L = 10^8 \text{ km}$

E = 0.3 to 3 MeV

Earlh

$$v_e \rightarrow v_x$$

$$\Delta m^2 = \sim 3 \times 10^{-3} \text{ eV}^2$$

Prob_{OSC} = ~100%

$$\Delta m^2 = \sim 5 \times 10^{-5} \text{ eV}^2$$

Prob_{OSC} = ~100%

LSND Experiment

LSND took data from 1993-98

- 49,000 Coulombs of protons
- $L = 30 \text{m} \text{ and } 20 < E_{v} < 53 \text{ MeV}$

Saw an excess of: $87.9 \pm 22.4 \pm 6.0$ events.

With an oscillation probability of $(0.264 \pm 0.067 \pm 0.045)\%$.

3.8 σ evidence for oscillation.

Other oscillations? Sterile Neutrinos?

Other oscillations? Sterile Neutrinos?

Other oscillations? Sterile Neutrinos?

MiniBoone

- 1 GeV neutrinos (Booster)
- 800 ton oil Cerenkov
- operating since 2003
- V_µ -> V_e appearance

NUSS, July 10,

Historical Lessons

- how did we make the discoveries?

Historical Lessons

- how did we make the discoveries?

```
#1 persistence
#2 data "anomalies", the unforeseen
#3 theorists aren't (always) right
#4 unique, model-independent measurements
#5 big steps vs incremental improvements
#6 and a little bit of luck ... in detecting a supernova
```

#1 persistence

1970-1995

Neutrino Energy (MeV)

Total Rates: Standard Model vs. Experiment Bahcall-Pinsonneault 2000

Atmospheric Neutrino <u>Anomaly</u>

Solar Neutrino Problem

Total Rates: Standard Model vs. Experiment

Solar Neutrino Problem

Atmospheric Neutrino **Anomaly**

Low-Energy Excess in MiniBoone?

#3 theorists aren't (always) right ...

quark mixing

$$V_{CKM} = \left[\begin{array}{cccc} V_{ud} = 0.975 & V_{us} = 0.211 & V_{ub} = 0.005 \\ V_{cd} = 0.211 & V_{cs} = 0.974 & V_{cb} = 0.04 \\ V_{td} = 0.005 & V_{ts} = 0.041 & V_{tb} = 0.999 \end{array} \right]$$

neutrino mixing

$$U = \begin{bmatrix} U_{e1} & U_{e2} & U_{e3} \\ U_{\mu 1} & U_{\mu 2} & U_{\mu 3} \\ U_{\tau 1} & U_{\tau 2} & U_{\tau 3} \end{bmatrix}$$

$$= \begin{bmatrix} 1 & 0 & 0 \\ 0 & c_{23} & s_{23} \\ 0 & -s_{23} & c_{23} \end{bmatrix} \begin{bmatrix} c_{13} & 0 & s_{13}e^{-i\delta} \\ 0 & 1 & 0 \\ -s_{13}e^{i\delta} & 0 & c_{13} \end{bmatrix} \begin{bmatrix} c_{12} & s_{12} & 0 \\ -s_{12} & c_{12} & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} e^{i\alpha_1/2} & 0 & 0 \\ 0 & e^{i\alpha_2/2} & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

$$= \begin{bmatrix} c_{12}c_{13} & s_{12}c_{13} & s_{13}e^{-i\delta} \\ -s_{12}c_{23} - c_{12}s_{23}s_{13}e^{i\delta} & c_{12}c_{23} - s_{12}s_{23}s_{13}e^{i\delta} & s_{23}c_{13} \\ s_{12}s_{23} - c_{12}c_{23}s_{13}e^{i\delta} & -c_{12}s_{23} - s_{12}c_{23}s_{13}e^{i\delta} & c_{23}c_{13} \end{bmatrix} \begin{bmatrix} e^{i\alpha_1/2} & 0 & 0 \\ 0 & e^{i\alpha_2/2} & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

#3 theorists aren't (always) right ...

"Oscillation mixing angles must be small like the quark mixing angles"

"Atmospheric neutrino anomaly must be other physics or experimental problem because it needs such a large mixing angle"

"Natural scale for $\Delta m^2 \sim 10 - 100 \text{ eV}^2$ since needed to explain dark matter"

"LSND result doesn't fit in so must not be an oscillation signal"

#3 theorists aren't (always) right ...

"Oscillation mixing angles must be small like the quark mixing angles"

Wrong

"Atmospheric neutrino anomaly must be other physics or experimental problem because it needs such a large mixing angle"

Wrong

"Natural scale for $\Delta m^2 \sim 10 - 100 \text{ eV}^2$ since needed to explain dark matter"

Wrong

"LSND result doesn't fit in so must not be an oscillation signal"

???

#4 unique, model-independent measurements

a v_x detector

Neutral-Current (NC)

$$v_x+d \rightarrow v_x+n+p$$

Charged-Current (CC)

 $v_e + d \rightarrow e^- + p + p$

- eliminate model-dependent assumptions and interpretation
- physics result independent of Monte Carlo
- any result from SNO would have been interesting: win-win situation!

#5 taking big steps

baseline: 1 km 1

180 km

size: 5 ton

1000 ton

#6 and a little bit of luck...in detecting a SN

Supernova 1987A

Nobel Prize for the Detection of Cosmic Neutrinos

The Prize Winners for 2002

The Nobel Prize in Physics

"for pioneering contributions to astrophysic in particular for the detection of cosmic neutrinos"

Raymond Davis Jr. USA

Masatoshi Koshiba Japan

Raymond Davis Jr.

Masatoshi Koshiba

Kamiokande was ready to seize the opportunity

Future Efforts

- from discoveries to precision studies, picking the best tools at hand
- what are the future directions of neutrino physics?
- neutrinos in particle/astrophysics

Neutrino Mass Splitting

Neutrino Mass Splitting

• KamLAND provides most precise value of Δm₁₂² (~2.8%)

Neutrino Mixing Angles

$$U = \begin{pmatrix} U_{e1} & U_{e2} & U_{e3} \\ U_{\mu 1} & U_{\mu 2} & U_{\mu 3} \\ U_{\tau 1} & U_{\tau 2} & U_{\tau 3} \end{pmatrix} = \begin{pmatrix} 0.8 & 0.5 & U_{e3} \\ 0.4 & 0.6 & 0.7 \\ 0.4 & 0.6 & 0.7 \end{pmatrix}$$

U_{MNSP} Matrix

Maki, Nakagawa, Sakata, Pontecorvo

$$= \begin{pmatrix} 1 & 0 & 0 \\ 0 & \cos\theta_{23} & \sin\theta_{23} \\ 0 & -\sin\theta_{23} & \cos\theta_{23} \end{pmatrix} \times \begin{pmatrix} \cos\theta_{13} & 0 & e^{-i\delta_{CP}}\sin\theta_{13} \\ 0 & 1 & 0 \\ -e^{i\delta_{CP}}\sin\theta_{13} & 0 & \cos\theta_{13} \end{pmatrix} \times \begin{pmatrix} \cos\theta_{12} & \sin\theta_{12} & 0 \\ -\sin\theta_{12} & \cos\theta_{12} & 0 \\ 0 & 0 & 1 \end{pmatrix} \times \begin{pmatrix} 1 & 0 & 0 \\ 0 & e^{i\alpha/2} & 0 \\ 0 & 0 & e^{i\alpha/2+i\beta} \end{pmatrix}$$

atmospheric, K2K

reactor and accelerator SNO, solar SK, KamLAND

0νββ

$$\theta_{23} = \sim 45^{\circ}$$

$$\theta_{13} = ?$$

$$\theta_{12} \sim 32^{\circ}$$

Neutrino Mixing Angles

$$U = \begin{pmatrix} U_{e1} & U_{e2} & U_{e3} \\ U_{\mu 1} & U_{\mu 2} & U_{\mu 3} \\ U_{\tau 1} & U_{\tau 2} & U_{\tau 3} \end{pmatrix} = \begin{pmatrix} 0.8 & 0.5 & U_{e3} \\ 0.4 & 0.6 & 0.7 \\ 0.4 & 0.6 & 0.7 \end{pmatrix}$$

U_{MNSP} Matrix

Maki, Nakagawa, Sakata, Pontecorvo

$$= \begin{pmatrix} 1 & 0 & 0 \\ 0 & \cos\theta_{23} & \sin\theta_{23} \\ 0 & -\sin\theta_{23} & \cos\theta_{23} \end{pmatrix} \times \begin{pmatrix} \cos\theta_{13} & 0 & e^{-i\delta_{CP}}\sin\theta_{13} \\ 0 & 1 & 0 \\ -e^{i\delta_{CP}}\sin\theta_{13} & 0 & \cos\theta_{13} \end{pmatrix} \times \begin{pmatrix} \cos\theta_{12} & \sin\theta_{12} & 0 \\ -\sin\theta_{12} & \cos\theta_{12} & 0 \\ 0 & 0 & 1 \end{pmatrix} \times \begin{pmatrix} 1 & 0 & 0 \\ 0 & e^{i\alpha/2} & 0 \\ 0 & 0 & e^{i\alpha/2+i\beta} \end{pmatrix}$$

atmospheric, K2K

reactor and accelerator SNO, solar SK, KamLAND

0νββ

$$\theta_{23} = \sim 45^{\circ}$$

$$\theta_{13} = ?$$

$$\theta_{12} \sim 32^{\circ}$$

maximal?

large, but not maximal!

Neutrino Mixing Angles

$$U = \begin{pmatrix} U_{e1} & U_{e2} & U_{e3} \\ U_{\mu 1} & U_{\mu 2} & U_{\mu 3} \\ U_{\tau 1} & U_{\tau 2} & U_{\tau 3} \end{pmatrix} = \begin{pmatrix} 0.8 & 0.5 & U_{e3} \\ 0.4 & 0.6 & 0.7 \\ 0.4 & 0.6 & 0.7 \end{pmatrix}$$

U_{MNSP} Matrix

Maki, Nakagawa, Sakata, Pontecorvo

$$= \begin{pmatrix} 1 & 0 & 0 \\ 0 & \cos\theta_{23} & \sin\theta_{23} \\ 0 & -\sin\theta_{23} & \cos\theta_{23} \end{pmatrix} \times \begin{pmatrix} \cos\theta_{13} & 0 & e^{-i\delta_{CP}}\sin\theta_{13} \\ 0 & 1 & 0 \\ -e^{i\delta_{CP}}\sin\theta_{13} & 0 & \cos\theta_{13} \end{pmatrix} \times \begin{pmatrix} \cos\theta_{12} & \sin\theta_{12} & 0 \\ -\sin\theta_{12} & \cos\theta_{12} & 0 \\ 0 & 0 & 1 \end{pmatrix} \times \begin{pmatrix} 1 & 0 & 0 \\ 0 & e^{i\alpha/2} & 0 \\ 0 & 0 & e^{i\alpha/2+i\beta} \end{pmatrix}$$

atmospheric, K2K

reactor and accelerator

SNO, solar SK, KamLAND

0νββ

$$\theta_{23} = \sim 45^{\circ}$$

$$\theta_{13} = ?$$

$$\theta_{12} \sim 32^{\circ}$$

maximal?

large, but not maximal!

Open Questions

$$P(v_{\mu} \to v_{e}) - P(\overline{v}_{\mu} \to \overline{v}_{e}) = -16s_{12}a_{12}(s_{13}c_{13}^{2})s_{23}c_{23}$$

$$\sin \delta \sin \left(\frac{\Delta m_{12}^{2}}{4E}L\right) \sin \left(\frac{\Delta m_{13}^{2}}{4E}L\right) \sin \left(\frac{\Delta m_{23}^{2}}{4E}L\right)$$

Is there μ – τ symmetry in neutrino mixing?

Is there leptonic CPV?

What is mass hierarchy?

Do neutrinos have Majorana mass?

What is the absolute mass scale?

What is the role of neutrinos in the Universe?

Karsten Heeger, Univ. of Wisco

JSS, July 10, 2009

Open Questions

The Tools

reactor & accelerator experiments

search for 0vββ

β-decay experiments

astrophysics & cosmology

Questions

Is there μ – τ symmetry in neutrino mixing?

Is there leptonic CPV?

What is mass hierarchy?

Do neutrinos have Majorana mass?

What is the absolute mass scale?

What is the role of neutrinos in the Universe?

Neutrino Sources

Neutrinos from the Big Bang

~330 neutrinos per cm³

0.5 proton per cm³

Supernova Neutrinos

Atmospheric Neutrinos

High Energy Cosmic Neutrinos

Geo Neutrinos

Accelerator&Reactor Neutrinos

Solar Neutrinos

Neutrino Energies

Big-Bang neutrinos ~ 0.0004 eV

Neutrinos from the Sun < 20 MeV depending of their origin.

Antineutrinos from nuclear reactors < 10.0 MeV

Atmospheric neutrinos ~ GeV

Neutrinos from accelerators up to GeV (109 eV)

A World of Neutrino Detectors

reactor (\overline{v}_e disappearance)

$$P_{ee} \approx 1 - \sin^2 2\theta_{13} \sin^2 \left(\frac{\Delta m_{31}^2 L}{4E_v} \right) - \cos^4 \theta_{13} \sin^2 2\theta_{12} \sin^2 \left(\frac{\Delta m_{21}^2 L}{4E_v} \right)$$

- Clean measurement of θ_{13}
- No matter effects

accelerator (v_e appearance)

$$\begin{split} P(\nu_{\mu} \to \nu_{e}) &= 4c_{13}^{2}s_{13}^{2}s_{23}^{2}\sin^{2}\Delta_{31} \\ &+ 8c_{13}^{2}s_{13}s_{23}c_{23}s_{12}c_{12}\sin\Delta_{31}[\cos\Delta_{32}\cos\delta - \sin\Delta_{32}\sin\delta]\sin\Delta_{21} \\ &- 8c_{13}^{2}s_{13}^{2}s_{23}^{2}s_{12}^{2}\cos\Delta_{32}\sin\Delta_{31}\sin\Delta_{21} \\ &+ 4c_{13}^{2}s_{12}^{2}[c_{12}^{2}c_{23}^{2} + s_{12}^{2}s_{23}^{2}s_{13}^{2} - 2c_{12}c_{23}s_{12}s_{23}s_{13}\cos\delta]\sin^{2}\Delta_{21} \\ &- 8c_{13}^{2}s_{13}^{2}s_{23}^{2}(1 - 2s_{13}^{2})\frac{aL}{4E_{\nu}}\sin\Delta_{31}\left[\cos\Delta_{32} - \frac{\sin\Delta_{31}}{\Delta_{31}}\right] \; . \end{split}$$

reactor (\overline{v}_e disappearance)

$$P_{ee} \approx 1 - \sin^2 2\theta_{13} \sin^2 \left(\frac{\Delta m_{31}^2 L}{4E_v} \right) - \cos^4 \theta_{13} \sin^2 2\theta_{12} \sin^2 \left(\frac{\Delta m_{21}^2 L}{4E_v} \right)$$

- Clean measurement of θ_{13}
- No matter effects

accelerator (ve appearance)

matter

$$\begin{split} P(\nu_{\mu} \to \nu_{e}) &= 4c_{13}^{2}s_{13}^{2}s_{23}^{2}\sin^{2}\Delta_{31} \\ &+ 8c_{13}^{2}s_{13}s_{23}c_{23}s_{12}c_{12}\sin\Delta_{31}[\cos\Delta_{32}\cos\delta - \sin\Delta_{32}\sin\delta]\sin\Delta_{21} \\ &- 8c_{13}^{2}s_{13}^{2}s_{23}^{2}s_{12}^{2}\cos\Delta_{32}\sin\Delta_{31}\sin\Delta_{21} \\ &+ 4c_{13}^{2}s_{12}^{2}[c_{12}^{2}c_{23}^{2} + s_{12}^{2}s_{23}^{2}s_{13}^{2} - 2c_{12}c_{23}s_{12}s_{23}s_{13}\cos\delta]\sin^{2}\Delta_{21} \\ &- 8c_{13}^{2}s_{13}^{2}s_{23}^{2}(1 - 2s_{13}^{2})\frac{aL}{4E_{\nu}}\sin\Delta_{31}\left[\cos\Delta_{32} - \frac{\sin\Delta_{31}}{\Delta_{31}}\right] \; . \end{split}$$

reactor (\overline{v}_e disappearance)

$$P_{ee} \approx 1 - \sin^2 2\theta_{13} \sin^2 \left(\frac{\Delta m_{31}^2 L}{4E_v} \right) - \cos^4 \theta_{13} \sin^2 2\theta_{12} \sin^2 \left(\frac{\Delta m_{21}^2 L}{4E_v} \right)$$

- Clean measurement of θ_{13}
- No matter effects

mass hierarchy

matter

accelerator (v_e appearance)

$$\begin{split} P(\nu_{\mu} \to \nu_{e}) &= 4c_{13}^{2}s_{13}^{2}s_{23}^{2}\sin^{2}\Delta_{31} \\ &+ 8c_{13}^{2}s_{13}s_{23}c_{23}s_{12}c_{12}\sin\Delta_{31}[\cos\Delta_{32}\cos\delta - \sin\Delta_{32}\sin\delta]\sin\Delta_{21} \\ &- 8c_{13}^{2}s_{13}^{2}s_{23}^{2}s_{12}^{2}\cos\Delta_{32}\sin\Delta_{31}\sin\Delta_{21} \\ &+ 4c_{13}^{2}s_{12}^{2}[c_{12}^{2}c_{23}^{2} + s_{12}^{2}s_{23}^{2}s_{13}^{2} - 2c_{12}c_{23}s_{12}s_{23}s_{13}\cos\delta]\sin^{2}\Delta_{21} \\ &- 8c_{13}^{2}s_{13}^{2}s_{23}^{2}(1 - 2s_{13}^{2})\frac{aL}{4E_{\mu}}\sin\Delta_{31}\left[\cos\Delta_{32} - \frac{\sin\Delta_{31}}{\Delta_{31}}\right] \; . \end{split}$$

reactor (\overline{v}_e disappearance)

$$P_{ee} \approx 1 - \sin^2 2\theta_{13} \sin^2 \left(\frac{\Delta m_{31}^2 L}{4E_v} \right) - \cos^4 \theta_{13} \sin^2 2\theta_{12} \sin^2 \left(\frac{\Delta m_{21}^2 L}{4E_v} \right)$$

- Clean measurement of θ_{13}
- No matter effects

mass hierarchy

CP violation

accelerator (v_e appearance)

matter

$$\begin{split} P(\nu_{\mu} \to \nu_{e}) &= 4c_{13}^{2}s_{13}^{2}s_{23}^{2}\sin^{2}\Delta_{31} \\ &+ 8c_{13}^{2}s_{13}s_{23}c_{23}s_{12}c_{12}\sin\Delta_{31}[\cos\Delta_{32}\cos\delta] \sin\Delta_{32}\sin\Delta_{31}\sin\Delta_{21} \\ &- 8c_{13}^{2}s_{13}^{2}s_{23}^{2}s_{12}^{2}\cos\Delta_{32}\sin\Delta_{31}\sin\Delta_{21} \\ &+ 4c_{13}^{2}s_{12}^{2}[c_{12}^{2}c_{23}^{2} + s_{12}^{2}s_{23}^{2}s_{13}^{2} - 2c_{12}c_{23}s_{12}s_{23}s_{13}\cos\delta]\sin^{2}\Delta_{21} \\ &- 8c_{13}^{2}s_{13}^{2}s_{23}^{2}(1 - 2s_{13}^{2})\frac{aL}{4E_{\nu}}\sin\Delta_{31}\left[\cos\Delta_{32} - \frac{\sin\Delta_{31}}{\Delta_{31}}\right] \; . \end{split}$$

reactor (\overline{v}_e disappearance)

$$P_{ee} \approx 1 - \sin^2 2\theta_{13} \sin^2 \left(\frac{\Delta m_{31}^2 L}{4E_v}\right) - \cos^4 \theta_{13} \sin^2 2\theta_{12} \sin^2 \left(\frac{\Delta m_{21}^2 L}{4E_v}\right)$$

- Clean measurement of θ_{13}
- No matter effects

mass hierarchy

CP violation

accelerator (v_e appearance)

matter

$$\begin{split} P(\nu_{\mu} \to \nu_{e}) &= 4c_{13}^{2}s_{13}^{2}s_{23}^{2}\sin^{2}\Delta_{31} \\ &+ 8c_{13}^{2}s_{13}s_{23}c_{23}s_{12}c_{12}\sin\Delta_{31}[\cos\Delta_{32}\cos\delta] \sin\Delta_{32}\sin\delta] \sin\Delta_{21} \\ &- 8c_{13}^{2}s_{13}^{2}s_{23}^{2}s_{12}^{2}\cos\Delta_{32}\sin\Delta_{31}\sin\Delta_{21} \\ &+ 4c_{13}^{2}s_{12}^{2}[c_{12}^{2}c_{23}^{2} + s_{12}^{2}s_{23}^{2}s_{13}^{2} - 2c_{12}c_{23}s_{12}s_{23}s_{13}\cos\delta] \sin^{2}\Delta_{21} \\ &- 8c_{13}^{2}s_{13}^{2}s_{23}^{2}(1 - 2s_{13}^{2})\frac{aL}{4E_{\nu}}\sin\Delta_{31}\left[\cos\Delta_{32} - \frac{\sin\Delta_{31}}{\Delta_{31}}\right] \; . \end{split}$$

- $\text{sin}^22\theta_{13}$ is missing key parameter for any measurement of $~\delta_{\text{CP}}$

Precision Measurement of Mixing with Reactor \overline{v}

Search for θ_{13} in new oscillation experiment with <u>multiple detectors</u>

$$P_{ee} \approx 1 - \sin^2 2\theta_{13} \sin^2 \left(\frac{\Delta m_{31}^2 L}{4E_v} \right) - \cos^4 \theta_{13} \sin^2 2\theta_{12} \sin^2 \left(\frac{\Delta m_{21}^2 L}{4E_v} \right)$$

Small-amplitude oscillation due to θ_{13} integrated over E

Large-amplitude oscillation due to θ_{12}

reactor (\overline{v}_e disappearance)

$$P_{ee} \approx 1 - \sin^2 2\theta_{13} \sin^2 \left(\frac{\Delta m_{31}^2 L}{4E_v}\right) - \cos^4 \theta_{13} \sin^2 2\theta_{12} \sin^2 \left(\frac{\Delta m_{21}^2 L}{4E_v}\right)$$

- Clean measurement of θ_{13}
- No matter effects

mass hierarchy

CP violation

accelerator (v_e appearance)

matter

$$\begin{split} P(\nu_{\mu} \to \nu_{e}) &= 4c_{13}^{2}s_{13}^{2}s_{23}^{2}\sin^{2}\Delta_{31} \\ &+ 8c_{13}^{2}s_{13}s_{23}c_{23}s_{12}c_{12}\sin\Delta_{31}[\cos\Delta_{32}\cos\delta] \sin\Delta_{32}\sin\delta] \sin\Delta_{21} \\ &- 8c_{13}^{2}s_{13}^{2}s_{23}^{2}s_{12}^{2}\cos\Delta_{32}\sin\Delta_{31}\sin\Delta_{21} \\ &+ 4c_{13}^{2}s_{12}^{2}[c_{12}^{2}c_{23}^{2} + s_{12}^{2}s_{23}^{2}s_{13}^{2} - 2c_{12}c_{23}s_{12}s_{23}s_{13}\cos\delta] \sin^{2}\Delta_{21} \\ &- 8c_{13}^{2}s_{13}^{2}s_{23}^{2}(1 - 2s_{13}^{2})\frac{aL}{4E_{\nu}}\sin\Delta_{31}\left[\cos\Delta_{32} - \frac{\sin\Delta_{31}}{\Delta_{31}}\right] \; . \end{split}$$

- $\text{sin}^22\theta_{13}$ is missing key parameter for any measurement of $~\delta_{\text{CP}}$

Accelerator Experiments (NOvA, T2K etc)

Long Baseline Accelerator Experiments

Future Neutrino Oscillation Experiments

Large Detectors and Long Baselines

- search for CP violation with neutrino beam
- v mass hierachy
- proton decay (10³⁴ yrs→10³⁵ yrs)
- astrophysics
- atm v, geo v

R&D in US, Europe, and Japan
Ultimate oscillation experiment by 2020?

India Neutrino Observatory (INO)

A Next-Generation Atmospheric Neutrino Experiment

magnetized iron calorimeter

Magnetic field ~ 1 Tesla along y-direction

Mass: 50 kTon

Size : 48 m (x) \times 16m (y) \times 12 m (z)

140 layers of 6 cm thick iron

with 2.5 cm gap for active elements

Search for $0\nu\beta\beta$

The Next Frontier in Neutrino Physics

search for $0\nu\beta\beta$ is the only feasible method we know to establish the Majorana nature of neutrinos!

2v mode: conventional 2nd order process in nuclear physics

$$\Gamma_{2v} = G_{2v} \mid M_{2v} \mid^2$$

G are phase space factors

Ov mode: hypothetical process only if

 $G_{0v} \sim Q^5$

Neutrinos in the Universe

"neutrinos are the most abundant particles in the Universe besides photons"

Neutrinos and the Universe

very early universe I big bang nucleosynthesis I CMB I late time structure formation

Future Cosmological Constraints on Σm_{χ}

Cosmology probes important aspects of particle physics:

- Neutrino mass
- Dark energy equation of state

Partial degeneracy between m_y, ω (neutrino mass states and dark energy equation)

→ cross-correlate CMB and LSS, weak lensing, BAO measurements

Model	Cosmological probes	$\sigma(\sum m_ u)$
11 parameters 11 parameters 11 parameters 7 parameters 7 parameters	Planck only Planck+Wide-1 Planck+Wide-5 Planck+Wide-1 Planck+Wide-5	0.48 eV 0.15 eV 0.043 eV 0.082 eV 0.037 eV

Planck + LSST-like lensing survey survey $\Rightarrow \sigma(\Sigma m_{\chi}) \leq 0.05 \text{ eV}$

→ probes difference between normal and inverted hierarchy

Neutrinos and Supernovae

Kamiokande

40

Neutrinos and Supernovae

neutrino oscillation effects on supernova light-element synthesis

Interdependencies/Redundancies of Experiments

Need all types of experiments & observations

	absolute mass scale	Majorana Nature	Hierarchy	θ ₁₃	δср	a's
β-decay	/					
0vββ -decay	✓	/				/
reactor				✓		
accelerator			✓	/	/	
atmospheric			(\(\bullet\)			
astrophysics /cosmology	✓		()	(•/)		

Some Concluding Thoughts

- Last 10 years have been the decade of discovery in neutrino physics. Neutrino physics has demonstrated physics beyond the Standard Model.
- Neutrino physics is transitioning from a discovery to a precision science. Reactor and accelerator experiments will play a critical role in precision studies (solar and atmospheric may help).
- A rich program of neutrino experiments is underway to understand neutrino properties.
- Neutrinos are important in many astrophysical processes, and astrophysics/cosmology may help us understand the particle nature of neutrinos